ΑΙhub.org
 

GPT-4 + Stable-Diffusion = ?: Enhancing prompt understanding of text-to-image diffusion models with large language models


by
26 June 2023



share this:
comparison of LMD and stable diffusion using two examples, one with bananas on a table and the other with cats on the grass

By Long Lian, Boyi Li, Adam Yala and Trevor Darrell.

TL;DR: Text Prompt -> LLM -> Intermediate Representation (such as an image layout) -> Stable Diffusion -> Image.

Recent advancements in text-to-image generation with diffusion models have yielded remarkable results synthesizing highly realistic and diverse images. However, despite their impressive capabilities, diffusion models, such as Stable Diffusion, often struggle to accurately follow the prompts when spatial or common sense reasoning is required.

The following figure lists four scenarios in which Stable Diffusion falls short in generating images that accurately correspond to the given prompts, namely negation, numeracy, and attribute assignment, spatial relationships. In contrast, our method, LLM-grounded Diffusion (LMD), delivers much better prompt understanding in text-to-image generation in those scenarios.

Visualizations
Figure 1: LLM-grounded Diffusion enhances the prompt understanding ability of text-to-image diffusion models.

One possible solution to address this issue is of course to gather a vast multi-modal dataset comprising intricate captions and train a large diffusion model with a large language encoder. This approach comes with significant costs: It is time-consuming and expensive to train both large language models (LLMs) and diffusion models.

Our solution

To efficiently solve this problem with minimal cost (i.e., no training costs), we instead equip diffusion models with enhanced spatial and common sense reasoning by using off-the-shelf frozen LLMs in a novel two-stage generation process.

First, we adapt an LLM to be a text-guided layout generator through in-context learning. When provided with an image prompt, an LLM outputs a scene layout in the form of bounding boxes along with corresponding individual descriptions. Second, we steer a diffusion model with a novel controller to generate images conditioned on the layout. Both stages utilize frozen pretrained models without any LLM or diffusion model parameter optimization. We invite readers to read the paper on arXiv for additional details.

Text to layout
Figure 2: LMD is a text-to-image generative model with a novel two-stage generation process: a text-to-layout generator with an LLM + in-context learning and a novel layout-guided stable diffusion. Both stages are training-free.

LMD’s additional capabilities

Additionally, LMD naturally allows dialog-based multi-round scene specification, enabling additional clarifications and subsequent modifications for each prompt. Furthermore, LMD is able to handle prompts in a language that is not well-supported by the underlying diffusion model.

Additional abilities
Figure 3: Incorporating an LLM for prompt understanding, our method is able to perform dialog-based scene specification and generation from prompts in a language (Chinese in the example above) that the underlying diffusion model does not support.

Given an LLM that supports multi-round dialog (e.g., GPT-3.5 or GPT-4), LMD allows the user to provide additional information or clarifications to the LLM by querying the LLM after the first layout generation in the dialog and generate images with the updated layout in the subsequent response from the LLM. For example, a user could request to add an object to the scene or change the existing objects in location or descriptions (the left half of Figure 3).

Furthermore, by giving an example of a non-English prompt with a layout and background description in English during in-context learning, LMD accepts inputs of non-English prompts and will generate layouts, with descriptions of boxes and the background in English for subsequent layout-to-image generation. As shown in the right half of Figure 3, this allows generation from prompts in a language that the underlying diffusion models do not support.

Visualizations

We validate the superiority of our design by comparing it with the base diffusion model (SD 2.1) that LMD uses under the hood. We invite readers to our work for more evaluation and comparisons.

Main Visualizations
Figure 4: LMD outperforms the base diffusion model in accurately generating images according to prompts that necessitate both language and spatial reasoning. LMD also enables counterfactual text-to-image generation that the base diffusion model is not able to generate (the last row).

For more details about LLM-grounded Diffusion (LMD), visit our website and read the paper on arXiv.

BibTex

If LLM-grounded Diffusion inspires your work, please cite it with:

@article{lian2023llmgrounded,
title={LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models},
author={Lian, Long and Li, Boyi and Yala, Adam and Darrell, Trevor},
journal={arXiv preprint arXiv:2305.13655},
year={2023}
}


This article was initially published on the BAIR blog, and appears here with the authors’ permission.



tags:


BAIR blog




            AIhub is supported by:



Related posts :



New AI tool helps match enzymes to substrates

  24 Oct 2025
A new machine learning-powered tool can help researchers determine how well an enzyme fits with a desired target.

#AIES2025 social media round-up

  24 Oct 2025
Find out what participants got up to at the Conference on Artificial Intelligence, Ethics, and Society.

Looking ahead to #ECAI2025

  23 Oct 2025
Find out what the programme has in store at the European Conference on AI.

Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.

What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence