ΑΙhub.org
 

Researchers train robotic sensor to read braille at high speed


by
05 February 2024



share this:

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

Reference

High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions, Parth Potdar, David Hardman, Elijah Almanzor, Fumiya Iida, IEEE Robotics and Automation Letters (2024).




University of Cambridge




            AIhub is supported by:



Related posts :



EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.

Better images of AI on book covers

  25 Nov 2025
We share insights from Chrissi Nerantzi on the decisions behind the cover of the open-sourced book ‘Learning with AI’, and reflect on the significance of book covers.

What is AI poisoning? A computer scientist explains

  24 Nov 2025
Poisoning is a growing problem in the world of AI – in particular, for large language models.

New AI technique sounding out audio deepfakes

  21 Nov 2025
Researchers discover a smarter way to detect audio deepfakes that is more accurate and adaptable to keep pace with evolving threats.

Learning robust controllers that work across many partially observable environments

  20 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Interview with Mario Mirabile: trust in multi-agent systems

  18 Nov 2025
We meet ECAI Doctoral Consortium participant, Mario, to find out more about his research.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence