ΑΙhub.org
 

Ethics and AI: tackling biases hidden in big data


by
16 July 2021



share this:

two people looking at a computer with data on screen
How do artificial intelligence (AI) algorithms learn to predict and make decisions? Can we entrust them with decisions that affect our lives and societies? Are they neutral and as immune to societal imperfections as commonly thought?

Nello Cristianini (University of Bristol) investigates the challenges emerging from data-driven AI, addressing issues such as gender biases in AI algorithms, and shifts in people’s emotions reflected in social media content.

Watch an introduction to Nello’s research below:

Video from the European Research Council

You can find out more about specific projects below:

AI and human autonomy: an analysis of the interaction between intelligent software agents and human users

This work involved development of a model of an autonomous agent that allows researchers to distinguish various types of control that intelligent software agents can exert on users. The framework of this model allows different types of interaction (i.e. trading, nudging, coercion and deception) to be separated, and presents a unified narrative for discussion of important ethical, psychological and social issues.

Fairness in artificial intelligence

The research team addressed the critical issue of trust in AI, proposing a new high standard for models to meet (being agnostic to a protected concept), and a way to achieve such models.

Can machines read our minds?

In this research, Nello and his team reviewed empirical studies concerning the deployment of algorithms to predict personal information using online data. They were interested in understanding what kind of psychological information can be inferred on the basis of our online activities, and whether an intelligent system could use this information to improve its ability to subsequently steer our behaviour towards its own goals.

Shortcuts to artificial intelligence

This research considers some of the shortcuts that were taken in the field and their connection to some of today’s challenges in AI, including those relating to bias, value alignment, privacy and explainability.

Many of these challenges arise from use of training data generated by various social processes. Therefore, it is critical for us to consider the interface between social sciences and computational sciences. The analysis of media content (both traditional and new media) is necessary to understand what we use to train our models. This was the motivation behind the final project highlighted here:

Finding patterns in historical newspapers

Developed by Nello and his team, History Playground enables users to search for small sequences of words and retrieve their relative frequencies over the course of history. The tool makes use of scalable algorithms to first extract trends from textual corpora, before making them available for real-time search and discovery, presenting users with an interface to explore the data.


Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol. His research interests include data science, artificial intelligence, machine learning, and applications to computational social sciences, digital humanities and news content analysis.

AIhub focus issue on reduced inequalities

tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association