ΑΙhub.org
 

Agent Teaming in Mixed-Motive Situations – an AAAI Fall symposium


by
08 January 2024



share this:

Image by Jamillah Knowles & Reset.Tech Australia / © https://au.reset.tech/ / Better Images of AI / Detail from Connected People / Licenced by CC-BY 4.0

The AAAI Symposium on Agent Teaming in Mixed-Motive Situations, held from October 25-27, 2023, showcased the challenges and innovations in multi-agent interactions with varying goals and decision-making processes. The event featured experts from diverse backgrounds, including multi-agent systems, AI, and organizational behavior. Key highlights include:

  • Professor Subbarao Khambhampati’s (Arizona State University) keynote discussed the dual nature of mental modeling in cooperation and competition. The importance of obfuscatory behavior, controlled observability planning, and the use of explanations for model reconciliation was emphasized, particularly regarding trust-building in human-robot interactions.
  • Professor Gita Sukthankar’s (University of Central Florida) talk focused on challenges in teamwork, using a case study on software engineering teams. Innovative techniques for distinguishing effective teams from ineffective ones were explored, setting the stage for discussions on the complexities of mixed-motive scenarios.
  • Dr Marc Steinberg (Office of Naval Research) moderated an interactive discussion exploring research challenges in mixed-motive teams, including modeling humans, experimental setups, and measuring and assessing mixed-motive situations. This discussion provided diverse perspectives on the evolving landscape of agent teaming.
  • Accepted papers covered a wide range of topics, including maximum entropy reinforcement learning, multi-agent path finding, Bayesian inverse planning for communication scenarios, hybrid navigation acceptability, and safety. Talks also delved into challenges in human-robot teams and the importance of aligning robot values with human preferences.
  • Panel sessions explored themes such as team structure, collaboration within diverse teams, the role of game theory, and explicit and implicit communication within teams. Meta-level parameters for multi-agent collaboration and the importance of context in human-agent communication in mixed-motive settings were discussed.
  • Breakout group discussions focused on consensus and negotiation in mixed-motive groups, considering intragroup and intergroup dynamics. The impact of consensus on trust and future work in mixed-motive teaming, including interdisciplinary collaborations and resource identification, were explored.
  • The symposium successfully brought together a community actively addressing challenges in agent teaming within mixed-motive situations. The discussions highlighted the complexities of collaboration, trust-building, and decision-making in diverse multi-agent scenarios. Ongoing research and continued collaboration were emphasized to advance understanding in this field.

Useful links



tags: ,


Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.
Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.




            AIhub is supported by:


Related posts :



Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.

Repurposing protein folding models for generation with latent diffusion

  14 Apr 2025
The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding?

AI UK 2025 conference recordings now available to watch

  11 Apr 2025
Listen to the talks from this year's AI UK conference.

#AAAI2025 workshops round-up 2: Open-source AI for mainstream use, and federated learning for unbounded and intelligent decentralization

  10 Apr 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

Accelerating drug development with AI

  09 Apr 2025
Waterloo researchers use machine learning to predict how new drugs could affect the body




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association