ΑΙhub.org
 

Agent Teaming in Mixed-Motive Situations – an AAAI Fall symposium


by
08 January 2024



share this:

Image by Jamillah Knowles & Reset.Tech Australia / © https://au.reset.tech/ / Better Images of AI / Detail from Connected People / Licenced by CC-BY 4.0

The AAAI Symposium on Agent Teaming in Mixed-Motive Situations, held from October 25-27, 2023, showcased the challenges and innovations in multi-agent interactions with varying goals and decision-making processes. The event featured experts from diverse backgrounds, including multi-agent systems, AI, and organizational behavior. Key highlights include:

  • Professor Subbarao Khambhampati’s (Arizona State University) keynote discussed the dual nature of mental modeling in cooperation and competition. The importance of obfuscatory behavior, controlled observability planning, and the use of explanations for model reconciliation was emphasized, particularly regarding trust-building in human-robot interactions.
  • Professor Gita Sukthankar’s (University of Central Florida) talk focused on challenges in teamwork, using a case study on software engineering teams. Innovative techniques for distinguishing effective teams from ineffective ones were explored, setting the stage for discussions on the complexities of mixed-motive scenarios.
  • Dr Marc Steinberg (Office of Naval Research) moderated an interactive discussion exploring research challenges in mixed-motive teams, including modeling humans, experimental setups, and measuring and assessing mixed-motive situations. This discussion provided diverse perspectives on the evolving landscape of agent teaming.
  • Accepted papers covered a wide range of topics, including maximum entropy reinforcement learning, multi-agent path finding, Bayesian inverse planning for communication scenarios, hybrid navigation acceptability, and safety. Talks also delved into challenges in human-robot teams and the importance of aligning robot values with human preferences.
  • Panel sessions explored themes such as team structure, collaboration within diverse teams, the role of game theory, and explicit and implicit communication within teams. Meta-level parameters for multi-agent collaboration and the importance of context in human-agent communication in mixed-motive settings were discussed.
  • Breakout group discussions focused on consensus and negotiation in mixed-motive groups, considering intragroup and intergroup dynamics. The impact of consensus on trust and future work in mixed-motive teaming, including interdisciplinary collaborations and resource identification, were explored.
  • The symposium successfully brought together a community actively addressing challenges in agent teaming within mixed-motive situations. The discussions highlighted the complexities of collaboration, trust-building, and decision-making in diverse multi-agent scenarios. Ongoing research and continued collaboration were emphasized to advance understanding in this field.

Useful links



tags: ,


Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.
Suresh Kumaar Jayaraman is a postdoctoral researcher at the Robotics Institute at Carnegie Mellon University.




            AIhub is supported by:



Related posts :



We asked teachers about their experiences with AI in the classroom — here’s what they said

  05 Dec 2025
Researchers interviewed teachers from across Canada and asked them about their experiences with GenAI in the classroom.

Interview with Alice Xiang: Fair human-centric image dataset for ethical AI benchmarking

  04 Dec 2025
Find out more about this publicly-available, globally-diverse, consent-based human image dataset.

The Machine Ethics podcast: Fostering morality with Dr Oliver Bridge

Talking machine ethics, superintelligence, virtue ethics, AI alignment, fostering morality in humans and AI, and more.

Interview with Frida Hartman: Studying bias in AI-based recruitment tools

  02 Dec 2025
In the next in our series of interviews with ECAI2025 Doctoral Consortium participants, we caught up with Frida, a PhD student at the University of Helsinki.

Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence