ΑΙhub.org
 

AIhub blogpost highlights 2024


by
30 December 2024



share this:
laptop and cup of coffee on a table

Over the course of the year, we’ve had the pleasure of working with many talented researchers from across the globe. As 2024 draws to a close, we take a look back at some of the excellent blog posts from our contributors.


Generating physically-consistent local-scale climate change projections


Jose González-Abad reports on work on statistical downscaling for climate models, and introduces a framework which encodes physical constraints to improve consistency and robustness.


Theoretical remarks on feudal hierarchies and reinforcement learning

Two agents and a planet
Diogo Carvalho writes about research on hierarchical reinforcement learning, work that won him and his colleagues a best paper award at ECAI 2023.


Crowdsourced clustering via active querying


Yi Chen, Ramya Korlakai Vinayak and Babak Hassibi write about crowdsourced clustering: finding clusters in a dataset with unlabelled items by querying pairs of items for similarity.


The moderating effect of instant runoff voting


Kiran Tomlinson considers the instant runoff voting system and provide a mathematical backing for the argument that it favours moderate candidates in a way that plurality doesn’t.


An iterative refinement model for PROTAC-induced structure prediction


Proteolysis targeting chimeras (PROTACs) are small molecules that trigger the breakdown of traditionally “undruggable” proteins by binding simultaneously to their targets and degradation-associated proteins. Bo Qiang, Wenxian Shi, Yuxuan Song and Menghua Wu detail their work on PROTAC-induced structure prediction.


Learning programs with numerical reasoning


Inductive logic programming is a form of program synthesis that can learn explainable programs from small numbers of examples. Current approaches struggle to learn programs with numerical values. Céline Hocquette writes about work introducing a novel approach to dealing with these numerical values.


Are models biased on text without gender-related language?


Catarina G Belém and colleagues audited 28 popular language models to find out whether such models display gender biases in stereotype-free contexts. They found that, contrary to prior assumptions, gender bias does not solely stem from the presence of gender-related words in sentences.


Bridging the gap between user expectations and AI capabilities: Introducing the AI-DEC design tool


Christine Lee presents AI-DEC, a participatory design tool that enables users and AI systems to communicate their perspectives and collaboratively build AI explanations.


Proportional aggregation of preferences for sequential decision making


Nikhil Chandak and Shashwat Goel address the challenge of ensuring fairness in sequential decision making, leveraging proportionality concepts from social choice theory.


Building trust in AI: Transparent models for better decisions


Danial Dervovic is working on improving the interpretability of logistic regression models, proposing an augmentation to such models, which makes decisions made by them more understandable.


Enhancing controlled query evaluation through epistemic policies


A significant data challenge concerns the sharing of information without compromising sensitive details. Gianluca Cima, Domenico Lembo, Lorenzo Marconi, Riccardo Rosati and Domenico Fabio Savo present the controlled query evaluation framework – an approach that safeguards confidentiality whilst still providing answers to queries.


Dynamic faceted search: from haystack to highlight


The number of scholarly articles is growing rapidly, and finding the most relevant information from this vast collection of data can be daunting. Mutahira Khalid, Sören Auer and Markus Stocker utilise facet generation, an advanced search method that allows users to filter and refine search results.


Improving calibration by relating focal loss, temperature scaling, and properness


A key factor influencing both the accuracy and calibration of a model is the choice of the loss function during training. Viacheslav Komisarenko explores how to choose a loss function to achieve good calibration.


Multi-agent path finding in continuous environments


How can a group of agents minimise their journey length whilst avoiding collisions? Kristýna Janovská and Pavel Surynek explain all.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence